dataquieR: Data Quality in Epidemiological Research

Data quality assessments guided by a 'data quality framework introduced by Schmidt and colleagues 2021' <doi:10.1186/s12874-021-01252-7> target the data quality dimensions integrity, completeness, consistency, and accuracy. The scope of applicable functions rests on the availability of extensive metadata which can be provided in spreadsheet tables. Either standardized (e.g. as 'html5' reports) or individually tailored reports can be generated. For an introduction into the specification of corresponding metadata, please refer to the 'package web site' <>.

Version: 1.0.10
Depends: R (≥ 3.6.0)
Imports: patchwork, dplyr (≥ 1.0.2), emmeans, ggplot2 (≥ 2.1.0), ggpubr, lme4, lubridate, MASS, MultinomialCI, parallelMap, R.devices, reshape, rlang, robustbase, utils
Suggests: cowplot (≥ 0.9.4), anytime, digest, DT (≥ 0.15), flexdashboard, htmltools, knitr, rmarkdown, rstudioapi, testthat (≥ 2.3.2), tibble, markdown, vdiffr, parallel
Published: 2022-08-31
Author: University Medicine Greifswald [cph], Adrian Richter [aut], Carsten Oliver Schmidt [aut], Stephan Struckmann [aut, cre]
Maintainer: Stephan Struckmann <stephan.struckmann at>
License: BSD_2_clause + file LICENSE
NeedsCompilation: no
Language: en-US
Citation: dataquieR citation info
Materials: README NEWS
CRAN checks: dataquieR results


Reference manual: dataquieR.pdf
Vignettes: dataquieR example report


Package source: dataquieR_1.0.10.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): dataquieR_1.0.10.tgz, r-oldrel (arm64): dataquieR_1.0.10.tgz, r-release (x86_64): dataquieR_1.0.10.tgz, r-oldrel (x86_64): dataquieR_1.0.10.tgz
Old sources: dataquieR archive


Please use the canonical form to link to this page.